
 

 

 
 

Chapter 8: Analyzing Data: Inferential Statistics 
 

 
 
Chapter Overview 

Chapter 8 is the quantitative counterpart to Chapter 6.  This chapter provides instruction 

on statistical data analyses, focusing on those most commonly used by classroom 

teachers in their research. We will not include multiple regression, analysis of 

covariance, or factorial analysis as most beginning researchers do not design a study 

that requires these types of statistical analyses.   

 

INTRODUCTION 

We like to believe that the things we do have some positive impact. Sometimes this 

is an illusion. As an example, not long ago I wanted to see if I could get better gas 

mileage in my car.  Because I have a long commute from home to work, I drive mostly in 

the left lane. I wondered if the slower pace of the right lane would make a difference in 



 

 

my gas mileage. I switched to the right lane and carefully computed the gas mileage for a 

week. To my joy the mileage was a bit better. But, alas, over the next few weeks it turned 

out that right lane driving was actually worse. All the stop and go caused the vehicle to 

consume more gas.  The first week’s mpg was simply an example of normal random 

variation in my mileage and switching had not really made a difference. The illusion is 

that often we believe we have affected something in our lives but the reality is that 

differences may appear for other reasons.  

Statistics can help us sort out the normal variation in the things we are trying to do 

and help us see when we really have had an important impact. The tools to do this fall in 

the category of inferential statistics.  

Studies that use inferential statistics (studies that look to see if chance is a good 

explanation for a result appearing) are designed in a lot of different ways. We will talk 

about some of the designs that are likely to be most useful to you in the next chapter. 

Right now you need to know that the way to organize the variables in your study, 

regardless of its design, is to identify dependent and independent variables. A 

dependent variable is the thing you are measuring. If you want to know if students 

learned more, then test grades might be the dependent variable. If you want to know if 

boys were taller than girls in your class then height would be the dependent variable. If 

you want to know if one group of teachers had been teaching longer than another then 

years of teaching would be the dependent variable.  

Independent variables are called the grouping variable. In inferential studies you 

will be comparing one group to another or comparing the same people before and after 

something happened to them (an intervention). So, the independent variable is the 



 

 

variable that identifies which comparative group someone is in. In the case of where the 

dependent variable was learning the independent might be when the scores were gathered 

(before the intervention or afterward). In the case of comparing the heights of girls and 

boys the independent variable would be gender. In the case of looking at years of 

teaching the independent variable might be whether the teachers were elementary or 

secondary teachers. You get the idea. Generally, you will gather independent and 

dependent data for everyone in your study. Independent variable data tell you who is in 

what group that will be compared and dependent data gathered will be the same for 

everyone so that you can compare the groups. 

 

CHANCE AND THE NORMAL DISTRIBUTION 

As educational researchers we spend a lot of time trying to figure out if something 

happened by chance (i.e., it is likely to have occurred randomly) or if it happened because 

of something that affected what we were measuring.  Did a curriculum really improve 

student learning? Did a new conflict management program really reduce student 

referrals? Did an exercise program for 3rd graders really increase time on task? We want 

to know, like the gas mileage reduction example discussed earlier, that change we see 

after we have done something cannot easily be explained as something that is likely to 

have occurred by chance. If it is unlikely to have occurred by chance then we can have 

confidence that what we did actually had a predictable effect. 

In Chapter 7 we figured out how to compute percentile ranks. Percentile ranks were 

the percentage of scores that appeared lower than a given score in a normal distribution. 

A percentile rank of 90 meant that 90 percent of the comparison group scored lower than 



 

 

the score that represents the 90th percentile. Conversely that would mean that 10 percent 

scored at that point or higher.  If we were interested in any given student before they took 

the test we could ask how likely is it that that student would score in the 90th percentile or 

higher.  Since 10 percent of the students score at those levels you could say the student 

had a one in ten chance (10 percent) of scoring that high even if we knew nothing else 

about that student.  

Instead of looking an individual student’s score, how could we determine the 

probability that a mean score for a group would appear? We said earlier that statistics is 

almost never about looking at individuals but rather about understanding groups. So, we 

need to understand how to look at what would seem to be the percentile rank of a group. 

The procedure for doing this looks similar to what we did to determine percentile rank for 

an individual, but it is a bit more complicated. The 20 students in Mrs. Johnson’s math 

class take a standardized math exam. The mean score for the class is 81.47.  How does 

Mrs. Johnson’s class compare to other classes taking this test?  Trying to figure out the 

percentile rank of 81.47 has a problem. The normal distribution for the test is based on 

individual scores, and our mean score is based on averaging the scores from a group of 

20. Those two are not the same. To overcome this problem a new normal distribution is 

built based on the mean scores of comparable sized groups; in this case, a group of 20. If 

the mean score of every possible combination of 20 students was determined and then 

plotted to show a new normal distribution it would look very similar to the original 

distribution based on individual scores. If random groups of 20 students were selected, 

some averages for these groups would be higher than the mean for the whole group and 

some would be less. After enough randomly selected groups of 20 the mean scores will 



 

 

begin to cluster around the whole group mean with fewer considerably higher and lower 

than the whole group mean. What happens is the new distribution of means of groups of 

20 ends up having the same mean as the whole group, but because it is based on means of 

20 students, fewer means appear as you move farther above and below the mean than 

would be the case with the distribution based on individual scores. This new distribution 

has a name—sampling distribution of the mean—and the new standard deviation that 

appears also has a name—standard error. In other words, the same parameters we 

examined for individual scores have a counterpart when we examine group or population 

scores:  the mean becomes the mean of the sampling distribution and the standard 

deviation is replaced by standard error (see Figure 8-1).   

 

[Insert Figure 8-1 here] 

 

With this new distribution we could figure out how likely it was that Mrs. Johnson’s 

class mean score would have appeared by chance. This might be nice to know because if 

it was really unlikely to appear by chance, we might begin to believe that there was 

something unique about the students in her class or her teaching. 

Unfortunately, when we are doing our own research it is rare that our study collects 

scores on standardized assessments. Most of the time we are looking at some assessment 

to which there is no larger group to compare; that is we use criterion referenced vs. norm 

referenced assessments. If Mr. Smith teaches a unit on dinosaurs to his second graders, it 

would be common for him to use an assessment he designed himself. So how could we 

know if Mr. Smith’s students’ scores on the test could be explained as likely to occur by 



 

 

chance or, as we would hope,  more likely to have occurred because of Mr. Smith’s 

instruction on dinosaurs? Since there is no population to which to compare Mr. Smith’s 

class, some other group needs to stand in as the comparison group. In this case the group 

that took the pretest on the dinosaur curriculum will be the comparison group; that is, his 

class at the start of the unit. Is the group that took the pretest somehow now a different 

group after having experienced the curriculum? 

The last bit of statistical maneuvering that is needed to accomplish this task is 

called estimating parameters. If we do not know the mean of the sampling distribution 

or the standard error, then they have to be estimated. From Mr. Smith’s students’ pre-test 

scores we could easily compute the mean and standard deviation and we know the group 

size. We need the group size to estimate the sampling distribution of the mean, the 

standard deviation to estimate the standard error and the mean of the group to estimate 

the mean of the sampling distribution of the mean. At this point you may be beginning to 

glaze over. Think back to percentile ranks. What we want to know (in theory) is the 

percentile rank of Mr. Smith’s class in some theoretical distribution of a number of other 

classes of 20 students. If Mr. Smith’s post-test scores were unlikely to occur by chance in 

this distribution that would be an indication that Mr. Smith probably taught the unit well 

(or poorly if the scores went down). Fortunately, you will never have to do all of these 

theoretical calculations. The computer will do them for you.  

Take a look at Figure 8-2. The idea is to find the position of the post-test score in 

relationship to the theoretical distribution generated by estimating the parameters from 

the pre-test score. This works whenever you are comparing two group means even if they 



 

 

are not pre-test/post-test; for instance when you would compare two classes in which you 

used different instructional strategies. 

 

[Insert Figure 8-2 here] 

 

COMPARING GROUP MEANS WITH A t-TEST 

In the case of percentile rank, an individual score is being compared to the larger 

group. From the last chapter, you will recall that the calculation to do that is called a z-

score (the distance a score is from the mean in units of standard deviation). When we are 

looking at a group mean in comparison to another group the idea is the same—how far is 

a group’s score from the mean of a distribution of scores of groups of the same size in 

units of standard error? The calculation to do this is similar to the z-score, but because it 

involves estimating parameters, it is not the same. It is called a t-score or more familiarly, 

after all the calculations are done, a t-test. Just as a reminder, because we are dealing 

with mean scores, we are talking about analyzing interval data. 

Here is an example. Mrs. Greene gives her students a pre-test on earthquake facts. 

She then teaches a unit on earthquakes followed by the test again. She puts all of the 

scores into a spreadsheet and then tells the computer to compare the two sets of scores, 

the pre-test and the post-test, using a t -test. What the computer returns is a probability (a 

p value) that the two sets of scores were likely to have occurred from the same group by 

chance. If the probability is high that they could have appeared by chance, there is no 

evidence that Mrs. Greene’s teaching had any impact.  If the probability was low that the 

group means could have occurred randomly, then we would assume that the second set of 



 

 

scores came from a different group or, in our case, from a group that had been changed 

by something.  The most likely reason for the difference is the teaching. Good thing. 

This sounds easy but we have a subjective judgment to make here. At what point 

could we say that a difference in mean scores is so unlikely to have occurred by chance 

that it did not occur by chance; that is, a significant difference occurred? Researchers 

make different decisions on when groups are significantly different based on the 

importance of being wrong about that decision.  In other words, how sure do we have to 

be that the difference is the result of something we did and not have occurred purely by 

chance?   If a researcher is testing a drug to see if it has critical side effects, that 

researcher is going to want to be really sure that the results did not occur by chance. In 

that case, she might set the significant difference level at one in ten thousand. She would 

want to be as sure as possible that the drug did no harm.  

With social science research we are seldom this exacting. Generally, we set our 

probability level at .05 or 5%.  When studying the behavior and opinions of people, we 

assume that if there is less than 5% chance (1 in 20 chance) that group differences could 

have appeared randomly, then they did not appear randomly. They appeared because 

there was an actual difference between the two groups. In statistics, probabilities are 

always expressed as a decimal rather than a percent so a probability of random 

occurrence 5 percent of the time would be .05. To say this slightly differently, when 

comparing groups, we want to know that the probability that the group mean differences 

could have occurred by chance is less than .05. If we can show that the group mean 

differences are likely to occur by chance less than 5 percent of the time (p < .05) then we 

can say that the group differences are statistically significant. (As a habit when you are 



 

 

writing reports on quantitative research you should not use the word “significant” except 

when referring to statistical significance.) 

Think back to Mrs. Greene and her earthquake test. Here is what is conceptually 

going on when she tests for group mean differences (does a t-test). She gives a pretest. 

Using estimated parameters the computer generates a theoretical distribution of group 

mean scores from groups the same size as her class. Then when she gives the posttest the 

computer figures out how likely it is that the second group mean score could have 

appeared randomly in the theoretical distribution of group mean scores on the pretest. If it 

is highly probable (more than a 5 percent chance) that the second score could have 

appeared randomly, she would conclude that there is no difference in the two groups. In 

other words, the children had not changed in a statistically significant way in their ability 

to answer questions on the test after instruction. If the probability that the group mean 

difference could have appeared by chance is really low (less than 5 percent), then she can 

conclude that her students are not the same as the group that took the pretest. There is a 

statistically significant difference, presumably due to her instruction. She knows this 

instantly after the computer does the t-test because the computer generates a p value. If p 

is less than 5 percent (written p < .05), there is a statistically significant difference. 

When you are doing research in which you are comparing group mean scores what 

you care about is whether the group mean differences are significant (unlikely to have 

occurred by chance). When the computer calculates the p value it will be a precise value, 

like .035. What is important is whether the p value is smaller than the level you as a 

researcher have set to test for significance. How much smaller the number is doesn’t 

really make that much difference. Even so, in the 6th edition of the APA manual APA is 



 

 

suggesting that the actual values generated by the calculation are put into the tables in the 

results portion of your study report. You and your research mentor need to agree on what 

style of presentation makes the most sense. 

 

Hypothesis Testing and Errors 

When you read quantitative research in which group comparisons are reported, 

often the reports will be constructed by reporting whether group differences are 

significant, much the way that it was described above. We feel quite confident making 

conclusions based on statistically significant differences, but those conclusions may not 

be correct 100 percent of the time. The truth is that we can never know things absolutely. 

What we find is the best explanation for the moment but leaving open the possibility that 

a disconfirming fact may still be discovered. So, researchers end up doing something that 

always sounds way more complicated than it needs to be. They do studies in which they 

try to reject the explanation that what they want to find is not true.  

Here is what that looks like: I think that implementing a new discipline strategy 

wherein students are taught conflict management will reduce referrals in my school. My 

hypothesis is that if I compare a group that was taught the new strategy to a group that 

was not, I will see significantly fewer referrals in the group that received the instruction. 

In order to show my hypothesis is probably true I am going to start by stating the 

hypothesis in a form that says it is not true:  the new discipline strategy will have no 

effect on student referral numbers. This is called a null hypothesis (null as in none or no 

difference).  After I have gathered the data and run the t-test, I find that the probability 

that there is no difference in the groups (my null-hypothesis) is really small (p <.05). I 



 

 

can now reject the null hypothesis that there is no difference because it is so unlikely 

there is no difference. This means there probably is a difference. And, the best 

explanation that I have (although it is possible that there are others) is that the difference 

in the two groups came from implementing the new discipline strategy. 

Trying to keep all of the negatives straight when you are reasoning out hypothesis 

testing is a daunting task, which is why research reports often omit the statement of the 

null hypothesis. Procedurally, it makes little difference whether you include the statement 

of the null hypothesis in your report because readers assume that it exists whether or not 

you state it. Technically, the null hypothesis has to exist if we are doing good research 

because we always have to be cautious about the existence of alternative explanations to 

what we have found. We can never prove that something is true in all cases because we 

would have to test every possible case--hence, the approach of the null-hypothesis. 

Practically, you will read many research reports where the null hypothesis is never 

mentioned. You and your research mentor will have to make decisions about the report 

style that is best for your work. 

Thinking in terms of hypotheses does help us pay attention to an important problem 

in social science research. Earlier we said that establishing significance levels in research, 

called alpha levels, is based on the importance of not being wrong. If the alpha level is 

.05 that would mean that you would reject the null hypothesis and believe that the 

alternative (what you are interested in finding) was likely to be true if the probability that 

the null hypothesis was true was less than 5 percent. Put another way you could be wrong 

to reject the null hypothesis 5 percent of the time. We just assume that 5 percent is so 

small that it is worth the risk of being wrong.  



 

 

When the null hypothesis is rejected but should not have been (group differences 

did just appear randomly) that is called a Type I error or a false positive. That is, you 

thought the two groups were significantly different, but they were not. The opposite can 

be true also. It is possible that the null hypothesis was not rejected but that there really 

were differences in the groups. If the t-test says that the probability that the groups were 

the same (null hypothesis) was .25 we would say that was a pretty high probability and 

we would not reject the null. But, it is possible that there really were differences and we 

just lacked the evidence to be confident that we had seen them. Not rejecting a null 

hypothesis when there really were differences is called a Type II error or a false 

negative.  That is, you thought there was no difference between the two groups when 

there really was.  

Generally, for social scientists, the best way to reduce both Type I and Type II 

errors (that is, to be truly sure your results are not due to random error) is to have larger 

groups from which you gather data and to randomly select participants from the 

populations to which you wish to generalize. Often in our work neither of these are 

possibilities. Educational researchers are often using intact groups of students or other 

school personnel in which group sizes are limited and random selection is not a 

possibility. This is the point at which to remind yourself to be very humble about your 

findings. We need to work hard in designing research (especially quantitative research) to 

reduce alternative explanations to our findings, but alternative explanations are almost 

always possible. Reflecting on what those alternative explanations might be is part of 

what you will need to write in the conclusions section of your report. 

 



 

 

One- Tailed and Two-Tailed Tests 

When Mrs. Greene teaches about earthquakes, if the assessment of her students’ 

learning is aligned with the curriculum, it is hard to imagine that the group mean score 

from pretest to posttest would do anything but go up. In most other cases of doing social 

science research we cannot be so confident. For instance, using our example of teaching a 

conflict management strategy, it could be that our efforts had exactly the opposite effect 

that we had hoped or some other mitigating factor intervened and referrals actually go up 

in the treatment group. When comparing group mean scores it makes an important 

difference if we know ahead of time which set of scores will likely be higher than the 

other.  This is easiest to visualize by looking at a normal curve (see Figure 8-3).   

 

[Insert Figure 8-3 here] 

 

As researchers, we have set the alpha level for our study at .05.  What does this 

really mean?  In most instances, when doing t-tests we want to know if the second group 

mean is so unlikely to occur that it appears in the area representing 5 percent of the mean 

scores at the far end of the sampling distribution of the mean. If the score does reside in 

this area then we say it is so unlikely to occur by chance that it did not appear by chance; 

rather, it occurred for some other reason, which we hope is our intervention. That 5 

percent area could be at either end of the distribution. In the case of the dinosaur 

curriculum we hope to see the class mean on the posttest at the right end of the 

distribution because we expect student test scores to increase after instruction. In the case 

of the conflict management strategy we would hope to see the group mean for referrals at 



 

 

the left end of the distribution (significantly fewer referrals), as teaching conflict 

management should reduce behavioral referrals. 

What if we do not know ahead of time which direction the second group mean will 

be from the first?  What if we are unsure whether the treatment will cause an increase or 

decrease in the second group mean? Are you absolutely sure using cooperative learning 

as an instructional strategy will help students learn math facts better or is it possible they 

may actually do worse? We still have to abide by having the second score appear in the 

distribution less than 5 percent of the time. If we do not know which end of the curve to 

look toward, then the 5 percent has to be split between both ends of the curve. The score 

for the second group mean would have to appear in the area that represents 2.5 percent of 

curve on either end. If you did not split the 5 percent area and allowed the possibility of 5 

percent at each end of the curve, then you would actually have 10 percent of the area 

available to demonstrate significance—double what you had set for your study. 

When you know ahead of time what the direction of change is likely to be for your 

study, you can establish that the 5 percent area to show significance is in fact all at one 

end of the distribution. This is called a one-tailed test. When you can not anticipate the 

direction of change, you must split the 5 percent of the area to show significance to both 

ends of the distribution. This is called a two-tailed test. This makes a big difference in 

your study. Practically it becomes twice as difficult to show significance if you are using 

a two-tailed test. 

As a researcher you have to decide which test to use. Establishing that you can 

anticipate the direction of change is not always that easy. In cases where it may not be 

obvious, you should support your claim for using a one-tailed test with other research 



 

 

related to yours. As you read research papers you will find many examples where 

researchers inappropriately used a one-tailed test. It is surprisingly difficult in almost all 

social science research to be absolutely confident of the effect of an intervention. We do 

research because we are not sure of the answers. Therefore, almost by definition we 

should be cautious about anticipating the results of our work. When in doubt, use a two-

tailed test.  

Most statistical programs will give both the one and two-tailed results automatically 

so you, the researcher, must choose the correct value to report. If the statistical program 

you are using only provides the one-tailed result, it is very easy to compute the two-tailed 

result. The p value for a two-tailed test is exactly double that of the value generated for a 

one-tailed. 

 

Conservative Calculations 

Part of the art of quantitative research is to design studies that eliminate all possible 

explanations of changes that are observed except those changes that occurred because of 

the intervention that you are studying. We want to know that what we did (or what we 

watched happen) made a difference. The problem is that studying people is really messy. 

And to make it worse we are usually studying them in natural environments where we 

have little control over all of the other things that might be affecting behavior other than 

our intervention. For example, we generally do not test on Mondays or during spirit week 

or during other times when students’ minds might not be totally focused on their work.  

As another example, we have little control over whether a student studies at home, or 

how much parental help or encouragement students receive. 



 

 

To a certain degree, statisticians compensate for this lack of control by making the 

ability to show significance mathematically more difficult in situations where variation in 

the groups is more pronounced (one of the things that is hard to control). The calculations 

are designed to reduce Type I errors (where we have shown an important difference in 

groups and probably shouldn’t have).  If we feel the two groups we are comparing were 

different from the start (e.g., college bound and non-college bound seniors), we choose to 

do our statistical analyses using unequal variance.  If we feel the two groups we are 

comparing are similar (e.g., a control and treatment group for two different seventh grade 

science curriculum on the same topic), we choose to do our statistical analyses using 

equal variance.  A special kind of analysis is done if the two groups being compared are 

composed of exactly the same individuals (e.g., a pre/post test design); in that instance 

we can use a paired t-test. 

Here are more detailed examples of these comparisons. Let’s say we are interested 

in knowing if participation in after school sports affects GPA in high school students. A 

common way to do this would be to look at the students in a given high school and split 

them into two groups: those that participate in after school sports during the year and 

those that do not. Gather all of the GPAs for a given semester and run a t-test to see if the 

groups are significantly different. The problem with this study is that there are so many 

possible things that could be affecting these students’ choices about participating in 

sports that our “test” may not be measuring the relationship between GPA and sports at 

all. The two groups are probably enormously different on a number of characteristics to 

begin with:  after school responsibilities, interests, hobbies, etc. We would say that the 

two groups have unequal variance to mean that the groups are not very much alike. 



 

 

Caution would be warranted in this case to not get too excited about the results of the t-

test before beginning to eliminate some of the other possible influencing factors. Since 

we cannot control for all these variables between the groups, we rely on mathematics to 

help us.  With your statistical program you would automatically make a more 

conservative estimate of possible significance by choosing a t-test of groups with unequal 

variance.   

On the other end of the scale is a case like Mrs. Greene and the earthquake test. The 

students who took the pretest are exactly the same as the students who took the posttest. 

In cases where exactly the same people are in the two compared groups we would use a 

paired t-test. For this situation the differences in the two groups are dramatically reduced 

and we do not have to worry as much about other differences in the groups accounting for 

what we thought we saw as a significant difference based on our intervention. The 

calculation of significance can be less conservative because the groups are so similar.  

Depending on the statistical software you are using there is a third choice. Imagine 

you are comparing two 7th grade classes in the same school. You have every reason to 

believe that these children are similar in most ways and (this is important) the size of the 

two classes is essentially the same. In this case we still need to be worried about 

unaccounted for differences in the two groups, but less so than in the case of GPA and 

sports participation. This third category is when you would use a t-test for groups with 

equal variance. 

Here again the researcher needs to make some subjective judgment. If the two 

comparison groups have absolutely the same members in both groups (you can not do 

this if one student was gone on the day of the posttest) then use a paired t-test. If you 



 

 

believe the groups to be similar in most important ways and the two groups are almost the 

same size then use a t-test for groups with equal variance. All other cases, especially 

when comparing groups of different sizes, use a t-test for groups with unequal variance. 

 

ANALYSIS OF VARIANCE (ANOVA) 

It is very common that researchers design studies in which more than two groups 

need to be compared at once. For instance, in a study of strategies for improving reading 

comprehension you might want to have Group A read the stories only, Group B read the 

stories and draw pictures to illustrate what they read, and Group C complete a worksheet 

after reading the stories. After these interventions all of the students would receive the 

same comprehension test. To find out whether group mean differences were significant, it 

would seem that three comparisons would need to be made: A with B, A with C, and B 

with C. Doing three t-tests to make the comparisons would violate statistical logic. 

Statisticians would worry about all of the comparisons being independent of each other. 

The correct procedure is to use an Analysis of Variance (ANOVA) whenever more than 

two group means are being compared at the same time. An example of how this might 

look in a results section is shown in Chapter 9 (refer to Figure 9-4). 

An ANOVA generates a p value interpreted the same way it would be for a t-test. It 

tells whether group mean differences are likely to have occurred by chance. Somewhere 

in the comparisons of group means one or more of the comparisons is statistically 

significant if p < .05.  An ANOVA does the multiple comparisons (in our example, A and 

B, B and C, and A and C), but just tells you whether a significant difference exists—not 

which groups are statistically different. To determine which of the comparisons are 



 

 

significantly different, a further test must be done. These are called post hoc tests. 

Although there are a number of procedures available the two most common are Tukey’s 

and Scheffe’s. Generally, Tukey’s is used when group sizes are equivalent and Scheffe’s 

when they are not. (Scheffe’s is a more conservative calculation under the same 

reasoning as more conservative t-tests above.) Most statistical software will allow you to 

choose which post hoc analysis to use. Unfortunately, as of the writing of this text, 

Microsoft Excel does not provide that calculation although there are some third party 

“add-ins” which do. 

When the post hoc analysis is run, the results will give another p value for the 

specific two group comparisons which are subsumed under the larger ANOVA analysis. 

As a caution, it is possible for a post hoc analysis to show a significant comparison even 

when the p value for the ANOVA is not significant. Always look at the results of the 

ANOVA before determining if post hoc analysis is warranted. Reporting on significance 

can be done from the post hoc p values, but the results of the ANOVA should also be 

shown. 

Although different statistical programs display results differently, the example 

shown in Figure 8-4 is typical. Each group mean and standard deviation is calculated. 

Then the calculations for the ANOVA are presented in an ANOVA Table. In this table, 

one block is marked as “p”. This the result of the significance test for the overall 

ANOVA. In this case it is .002. Then, depending on which post hoc analysis is chosen, a 

table will display the specific group comparisons. In this case there is no significant 

difference between groups 1 and 2 (p = .382). There are significant differences between 

groups 1 and 3 (p = .001) and 2 and 3 (p = .025). In most of the papers, you will read the 



 

 

significant difference between groups 1 and 3 would be reported as p < .01 (you would 

have to assume that the .001 was rounded from a larger number) and between groups 2 

and 3 as p < .05.  Again, the newer APA guidelines suggest putting the actual p values 

into the table. With ANOVA tables this presents more challenges than with t-test results 

tables. We provide an example of how this may be done but you need to discuss the style 

for your report with your research mentor. 

In most cases when you are using statistical software, calculations will be reported 

that are more sophisticated than what you need. If you look at Figure 8-4, you will see 

many numbers returned in the read-out that you do not need to deal with at this point in 

time. We want you to be cautious, informed users of statistical analysis, but descriptions 

of all of the terms reported are beyond the design of this book and the number of terms 

displayed may vary depending on which statistical program you are using. On the other 

hand, we hope that this introduction will make you curious enough to investigate further 

on your own. 

 

[Insert Figure 8-4 here] 

 

PRACTICAL SIGNIFICANCE 

In a study of the differences of test scores between boys and girls on a standardized 

mathematics test in a school district, it might be discovered that boys scored significantly 

higher than girls. On closer examination of this study we would see that 423 boys and 

412 girls took the test and that the mean score for the boys was 67.7 and the mean score 

for the girls was 66.2. Statistically the differences were unlikely to have happened by 



 

 

chance (p < .05) so we would conclude that boys on average scored significantly better 

on the test than girls. But, is a 1.5 point difference really meaningful?  When group sizes 

grow very large, statistical significance appears with smaller and smaller numerical 

differences between the groups. In our example the significant difference is real, but it 

represents a very small difference in the actual mean scores of the girls and boys. From 

this study it would be difficult to rationalize changing the mathematics curriculum to 

assist girls because practically they are already doing as well as the boys.  A difference of 

1.5 points out of 100 is not of true concern.  So, while the difference is statistically 

significant, it is really of little practical significance. Practical significance refers to how 

useful a statistically significant finding is in real life.   

How can you tell how much weight to give to statistical findings? First it is 

important to discover if statistical differences appear. The probability that differences we 

see could happen by chance needs to be very low to start with. Once that has been 

established then we need to figure out how to determine if these differences are big 

enough to justify further action. Some tool needs to be used that can look at any study to 

determine the size of the impact of an intervention. This standardized computation of the 

amount of a difference between groups is called effect size.  

Determining effect size looks similar to determining z scores. The idea is to figure 

out the number of standard deviations between the two group mean scores (instead of 

between the mean and a given score as we do with z scores) in terms of standard 

deviations. Start by determining the mean of both groups and then subtracting one from 

the other to compute a “distance” between the two mean scores. Then we need to figure 

out this distance in terms of standard deviations.   The question is which standard 



 

 

deviation should be used for the division.  (Recall, there are two groups, so two means 

and two standard deviations.) Generally, averaging the two standard deviations and 

dividing that number into the mean differences will solve the problem. Statisticians do 

something a bit more complicated even though it seldom gives a solution much different 

from the suggestion above. They use something called a “pooled” standard deviation. 

This is computed by averaging the square of both standard deviations and then finding 

the square root (see Table 8-1).  

 

[Insert Table 8-1 here] 

 

Once you have the effect size of a group mean difference, you can report practical 

significance in your study. In general if you have an effect size around 0.2 (that is, 0.2 

standard deviations difference) the effect size is considered small. Effect sizes around 0.5 

are labeled medium and around 0.8 or larger are considered large. This is another of those 

subjective judgments we make as researchers. When reporting effect sizes, try to provide 

a rationale for why you believe in your case they represent small, medium or large effects 

in addition to the computed number. 

Here is an example. In a section of a biology class (section A) you teach a unit on 

mammals and administer a unit test at the end. In another section (section B) of the class 

you teach the same unit but this time you allow the students to examine some web sites 

that reinforce what you have been teaching. That group gets the same unit test at the end. 

Group A has a mean of 45.2 on the test and a standard deviation of 14.3. Group B has a 

mean of 52.7 and a standard deviation of 12.4.  You run a t-test and the group mean 



 

 

differences turn out to be significant. Group B scored, on average 7.2 points higher on the 

test. The average of the standard deviations is 13.35. The mean score difference divided 

by the average standard deviation equals 0.56. Since this is a distance between the two 

mean scores it makes no difference if the computation comes out positive or negative. 

Just use the absolute value of the result. You can report a moderate practical significance 

in this case.  

Effect Size = 52.7-45.2/ ((14.3 + 12.4) / 2) = .56  

 

 

CHI SQUARE 

So far we have been talking about looking for statistically significant differences in 

groups by comparing group means.  Sometimes you will have gathered data from groups 

that are not interval data and consequently no mean will be available. When data are in 

the form of nominal (using categories, e.g., gender, ethnicity) or ordinal variables (things 

can be ordered, but not uniformly measured, such as scales like once a month, once a 

week, once a day), it is still possible to use chance as way to determine if differences are 

likely to have appeared randomly or if something else important is going on. The 

statistical procedure for doing this is called Chi Square. As you will see, the richness of 

interpretation from this procedure is considerably less than comparisons of group means. 

Nonetheless, Chi Square can be a useful tool for group analysis. Unfortunately, Chi 

Square can also take more work to calculate than comparisons of group means. 



 

 

For Chi Square, the number of responses in each response category is listed in a 

table when two variables are compared (one on the x axis and one on the y axis of the 

table). The resulting table is called a contingency table or a cross tabs.  

Imagine that a reading teacher wants to know if students have preferences for the 

kind of stories they read. She asks each student if they would rather read stories about 

people, animals or travel. But, she is worried that boys might have a different preference 

than girls so she keeps track of whether each response comes from a girl or a boy. The 

question is, can she just ask for reading preference or will gender make a difference in the 

responses. She wants to know if the variables of reading preference and gender are 

independent or if she must know one to understand the other. The Chi Square test in this 

case is called a test of independence. 

With a test of independence the observed data are from two variables at the same 

time. To calculate whether boys and girls have statistically different reading preferences, 

start by placing the observed frequencies into a contingency table. In this case, we would 

have gender as the rows and types of stories as the columns.  Refer to Figure 8-5, which 

compares reading topic preference for boys and girls. 

 

[Insert Figure 8-5 here] 

 

Generally, the logic of Chi Square is to look at the distribution of the responses in 

the cells of the contingency table and to use a calculation to compare those responses to 

what you would have expected to find in the cells. The calculation produces a probability 

that the differences between the observed responses and the expected responses could be 



 

 

explained by random variation. If the probability is really low (p < .05) then random 

variation is not a good explanation for the differences and something else is.  The two 

variables are not independent. Onto to the calculations!  

Once you have the observed frequencies in the table, most statistical software will 

be able to calculate what the expected frequencies ought to be in each cell.  If you are 

using Excel, however, you will need to determine the expected frequencies by hand. 

Calculate the number of responses in each column of the table. Then calculate the total 

number of responses in each row of the table. Select one cell in the contingency table. 

Multiply the row total for that cell by the column total for that cell and divide by the total 

number of responses. The resulting number will be the expected value for that cell. Refer 

again to Figure 8-5.  In the case of the cell that lists the number of times boys picked 

people stories (upper left cell), multiply 26 (the row total) by 24 (the column total) and 

divide that by 61 (the total number of responses in the whole table).  The expected 

frequency is 10.230.  See the expected frequencies in Figure 8-6 calculated using this 

method. 

[Insert Figure 8-6 about here] 

 

If you have gotten this far, even Excel can do the rest of the Chi Square calculation 

for you. As noted above, if you are using a more sophisticated statistical program, 

calculating expected frequencies will not be necessary because the software will do it for 

you.  In either case, you will want to have the expected frequencies when you report your 

findings. Whatever statistical program you use, it will provide you with a number 

appropriately called the Chi Square (in this case it turns out to be 7.68). You will also be 



 

 

given a p value (in this case it turns out that it is .021) that is interpreted like any other p 

value. In Excel you have to use a formula called a chitest, but in most programs when 

you build the contingency table if you want it simply lists the Chi Square and p value 

below the table.  

Since the probability is low (p < .05) that the differences between the observed and 

expected frequencies could have occurred by chance, the teacher would conclude that the 

differences did not occur by chance.  Preference for reading topic is dependent on gender.  

You have to know the gender to help predict reading preference. The two variables are 

not independent.  

Unfortunately, the Chi Square does not tell you much more about what the 

differences in the preferences for the two groups are. It just tells you that the differences 

between the observed and expected differences were unlikely to occur by chance. It does 

not tell you which differences were unlikely to occur by chance. It is similar to the 

ANOVA in this aspect; however, there is no post-hoc test for the Chi Square.  As a 

researcher you now have to make a case for what the Chi Square has told you.  Often this 

is a subjective process. Go back through the table showing the observed and expected 

frequencies and look for inordinately large differences.  In our example you might 

suggest boys seem to select books about people less often than was expected, where girls 

selected people more often than expected. Remember that this is not statistical proof. You 

only know that it is really unlikely that gender and reading preference are independent, 

and you are making informed suggestions of where that dependence has appeared. 

A common use of the Chi Square is with questionnaire responses.  Very often you 

will see response category sets like: never, seldom, sometimes, and frequently. We have 



 

 

no trouble seeing these as ordinal data. The categories are clearly ordered but it is a 

struggle to believe that the intervals between these responses are equal. Ask yourself the 

question: is the distance between never and seldom the same as the distance between 

sometimes and frequently? Just saying that out loud makes it clear that that is a question 

that makes no sense. So, these are ordinal categories and not interval. These data should 

not be coded with a cardinal number (never = 1 and so on) and analyzed with means, 

standard deviations, or group mean comparisons. The more appropriate analysis with 

ordinal data is Chi Square. 

 As an aside, while there are many statistical software programs available on most 

college campuses that students have access to, we have found that nearly all of our 

students have Microsoft Office on their home or school computers and are comfortable 

using Excel spreadsheets.  As mentioned periodically throughout this and Chapter 7, 

Excel can be used to perform basic statistical analyses.  Because Excel is a software 

program that most of our students will have ready access to both now and in the future, 

we have included a set of basic instructions to perform common statistical analyses using 

Excel in Appendix E. 

 

NEXT STEPS 

In this chapter we have looked at ways to show statistically that important differences 

are appearing between groups. When you design a study with the intent of testing the 

impact of some intervention, usually this is what you would want to find. Statistical 

analysis is very good at showing if differences in groups are due to random chance or 

more likely to be because of something we did. Unfortunately statistical analysis is not 



 

 

very good at revealing if the design of your study may have allowed something else to 

impact your results beyond the intended intervention. We need to take a careful look at 

how to make as sure as possible that the impact you think you see from your intervention 

really is responsible for the results you observed. Before we do that, however, let’s look 

at some specific designs often used in quantitative research. 

 

CHAPTER SELF-CHECK 

Having completed this chapter, you should be comfortable discussing the following: 

• normal distribution, including standard error and estimating parameters 

• tests of significance:  t-test, paired t-tests, ANOVA, Chi Square 

• null hypothesis 

• statistical vs. practical significance 

• Type I and Type II errors 

• one and two tailed tests 

• setting significance levels 

 
 
CHAPTER REVIEW QUESTIONS 
 
 

1. Why is it important to see if mean score changes are statistically significant when 

you can clearly see that scores have improved? 

 

2. Why is it so difficult to prove something in quantitative research? 

 



 

 

3. How do you convince a reader of your research that it was appropriate to do a 

one-tailed test? 

 

4. Under what circumstances can you use a paired t-test? 

 

5. What are post hoc tests? 

 

6. Why is practical significance important? 

 

7. When do you need to use a Chi Square test? 

 

 

The following references provide additional explanations of many of the concepts in this 

chapter: 
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Figure 8-1: Comparison of normal distribution formed with individuals and a 

distribution formed from group sizes of 20 (sampling distribution of the mean). 
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Figure 8-2: Mr. Smith’s Curriculum (Estimating Parameters) 
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Figure 8-3: Differences between one-tailed and two-tailed tests with p set at .05 
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Figure 8-4: Example ANOVA Results 

Grand Mean 111.60    
N 93    

     

Group(group) N Group Mean 
Std 

Deviation  
1 31 95.35 29.62  
2 30 104.43 48.88  
3 32 134.06 52.57  
     

 
ANOVA 

Table    
Source of Variance SS DF MS F 

Between Groups 25867.941 2.000 12933.971 6.422 
Within Groups 181262.338 90.000 2014.026  

Total 207130.280    
     
 P .002   

 
Eta 

Squared .125   
     
     
Post Hoc tests Comparison Mean Difference T-Value P - Unadjusted 
Group_1     
 1 and 2 9.078 .881 .382 
 1 and 3 38.708 3.585 .001 
Group_2     
 2 and 3 29.629 2.294 .025 

 
 
 

 

 



 

 

 

 

 

 

 

Table 8-1: Computing Effect Size 

Effect Size = mean1 – mean2  /  ((std dev1 + std dev2)/2)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 8-5: Cross Tabs Example 

 Reading Preference 
 People Animals Travel 

    
Boys 5 8 13 

    
Girls 19 6 10 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

  



 

 

Figure 8-6: Observed and Expected Frequencies in a Chi Square 

 Reading Preference  

Gender People Animals Travel 
Row 
Total 

Boys 5 8 13 26 
Expected 10.230 5.967 9.803  
     

Girls 19 6 10 35 
Expected 13.770 8.033 13.197  
     
Columns 
Total 24 14 23 61 

 
 
 
 


